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Abstract

Previous turbulence measurements along a near-ground, 500 m, horizontal path

using two helium-neon laser beacons and a Hartmann Turbulence Sensor (HTS)

yielded profiles of C2
n by estimating turbulence parameters such as Fried’s coherence

length, inner scale, and Greenwood frequency by measuring local aberrated wave-

front tilts. The HTS C2
n estimates were consistent with integrated turbulence values

collected along the same path by a BLS900 scintillometer. Further validation of the

HTS profiling method is necessary to produce accurate optical turbulence profiles for

wavefront correction and to eventually gain an improved understanding of turbulence

in the lower atmosphere and its variation as a function of altitude. In order to add

confidence to the HTS dual-beacon profiling method, a collection of sonic anemome-

ters was added along the path to collect point measurements of C2
T , which were used

to derive values of C2
n. Comparison of the independently measured data sets helps le-

gitimize the HTS turbulence profiling method. Propagation over a non-homogeneous

path (i.e. part grass and part concrete) ensured the turbulence profile along the path

is more varied. C2
n profiles in this work derived from HTS data captured on 25 and 26

July 2019 agreed strongly with the collocated anemometer and BLS measurements.
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VALIDATION OF HTS OPTICAL TURBULENCE PROFILING VIA SONIC

ANEMOMETRY

I. Introduction

Any �eld relying on atmospheric propagation, whether it be long-range imaging or

laser operation, must take into account the detrimental e�ects of optical turbulence.

Knowledge of key turbulence parameters, such as the Fried coherence length,r0,

the refractive index structure parameter,C2
n , and the Greenwood frequency,f G is

necessary to model the turbulence along a path. The Hartmann Turbulence Sensor

(HTS) was designed by the Optical Science Company (tOSC) as a tool to provide time

e�cient and reliable estimates of these statistical parameters [1]. A novel method of

turbulence pro�ling using an HTS system is discussed in this thesis.

1.1 Motivation

For decades, researchers have attempted to produce models of optical turbulence

in the surface layer of the atmosphere (< 100 m), where its e�ects on wavefront prop-

agation are most prominent [2]. Negative impacts of atmospheric turbulence include

laser wavefront degradation and an increase in transmission bit error rates in commu-

nication systems. The task of modeling and pro�ling turbulence has proven di�cult

due to the chaotic nature of turbulence and lack of proper measurements. Methods

using scintillometry are e�ective to estimate statistical parameters of the turbulence

along a path. However, scintillometers are easily saturable over long paths and there-

fore have limited operational range [3]. Adaptive optics (AO) systems have demon-

strated their e�ectiveness in compensating for the optical turbulence through use of
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a deformable mirror, but under highly anisoplanatic conditions, compensation with a

single mirror is inadequate and additional information on the turbulence pro�le must

be gathered for e�ective compensation. If the full turbulence pro�le is known, mul-

tiple deformable mirrors can be operated to correct the phase distortions [4]. In the

past, these pro�les have been found using techniques like Scintillation Detection and

Ranging (SCIDAR), which su�ers from similar saturation problems as scintillometers,

and Slope Detection and Ranging (SLODAR) [5, 6, 7, 8, 9]. These techniques are

restricted by their need for large apertures and data processing requirements. The

present technique of HTS operation uses SLODAR-like measurements. However, the

methodology to derive the pro�les is much di�erent. The HTS uses a phase-based

technique rather than irradiance-based and hence does not su�er from saturation is-

sues. HTS operation also bene�ts from a very high-speed camera that is capable of

collecting extensive sample sizes in short periods of time for reliable estimation of

turbulence parameters. This makes the HTS an ideal candidate to feed information

into AO systems, which require accurate real-time knowledge of turbulent parame-

ters in order for their closed-loop feedback mechanisms to function properly. A new

method of HTS operation developed at the Air Force Institute of Technology (AFIT)

Center for Directed Energy (CDE) is outlined and presented as a potential solution

to the problems outlined above.

1.2 Objective

Previous work [2] has proven that HTS operation with two source beacons is an ef-

fective method of pro�ling turbulence by comparison with a commercial scintillometer

along the same horizontal path. The scintillometer provides single, center-weighted,

integrated C2
n values. Therefore, the comparison was made to the center-path mea-

surements of the HTS pro�le. The purpose of this thesis is to further validate this

2



two-beacon pro�ling method by comparison with a scintillometer and with sonic

anemometers collocated along the path. This work will eventually help in obtain-

ing a greater understanding of surface-layer optical turbulence. The �nal product

from this work will be C2
n pro�les and r0 estimates under varying turbulent condi-

tions including time of day, cloud coverage, and wind velocity. TheC2
n pro�les will

be optimized and compared with theC2
n estimates produced by a boundary-layer

scintillometer and with the C2
n point measurements derived from anemometer data.

The wavefront tilts found from HTS measurements could later be passed through

an AO system to correct for the turbulence-induced phase distortions in real time.

The inhomogeneous pro�ling path chosen for this work includes sections of grass and

sections of concrete, which will provide more information on how these parameters

a�ect local turbulence strength.

1.3 Organizational Structure

Chapter 2 of this thesis provides a literature review of the past work in the �eld

of optical turbulence and the methods of estimating turbulence parameters as well as

the applications of this work. It lays the theoretical foundation supporting this work.

Chapter 3 is a summary of the operating equipment, the experimental methodology,

and the theory used to generate and optimize the pro�les. Chapter 4 presents the

results and their signi�cance. Lastly, chapter 5 discusses the results in terms of the

goal of this thesis and provides possible routes for future work on the subject.
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II. Background

The purpose of this chapter is to provide the foundational level of knowledge

needed to reproduce this thesis by summarizing the literature. Electromagnetic wave

propagation is discussed along with its connection to �rst principles. Then, optical

turbulence in the atmosphere and the Kolmogorov theory are summarized along with

any underlying assumptions. Previous methods of measuring turbulence parameters

such as slope detection and ranging (SLODAR) and scintillation detection and ranging

(SCIDAR) are also outlined as well as their connection with this work and the goal

of this thesis. Finally, adaptive optics is introduced as an applicable method of

correcting for turbulence distortion.

2.1 Electromagnetic Wave Propagation

In order to understand how light propagates through a turbulent atmosphere, one

must understand how light propagates through a still atmosphere. Under the stan-

dard assumptions that the atmosphere is a linear, inhomogenous, isotropic medium,

Maxwell's equations, which describe the electric and magnetic �elds,E and H re-

spectively, of an electromagnetic wave are written

� r � E =
@
@t

(� H ) (1)

r � H � � E =
@
@t

(� E) (2)

r � (� E) = � (3)

r � (� H ) = 0 : (4)
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The permittivity � , the permeability � , the charge density� , and the conductivity

� are all electromagnetic properties of the medium [10].� 0 and � 0 denote the per-

mittivity and permeability in free space. In the atmosphere, each of these properties


uctuate temporally and spatially and hence the �eldsE and H can be written as

E(r ; t) = e� i!t E(r ) (5)

H (r ; t) = e� i!t H (r ); (6)

where ! = 2�� is the angular frequency andi =
p

� 1 is the imaginary number.

Substituting (2) and the curl of (1) into the vector identity

r � (r � A ) = r (r � A ) � r 2A (7)

along with some further simpli�cations and assumptions outlined in detail by Mahalov

et al. [10], results in the vector Helmholtz equation

r 2E(r ) + k2
0n2(r )E(r ) = 0 : (8)

k2
0 = ! 2� 0� 0 is the wavenumber and n is the refractive index, which physically repre-

sents how fast light will travel through the medium at locationr . r 2 is the Laplacian

operator de�ned by

r 2 �
@2

@x2
+

@2

@y2
+

@2

@z2
: (9)

The solutions to (8) satisfy the scalar form of the Helmholtz equation

r 2u + k2
0n2(r )u = 0; (10)

5



which itself has solutions of the form

u(r ) = A(r )eik 0 � (r ) ; (11)

whereA is the amplitude at location r and � is the phase atr .

The Helmholtz equation results from a derivation of the wave equation when

looking speci�cally at the complex component of the wave and is therefore useful

in more elaborate situations [11]. In a more general sense, propagating waves are

solutions to the three-dimensional di�erential wave equation

r 2u =
1
v2

@2u
@t2

; (12)

wherev = !=k is the wave's propagation velocity. Light waves emerging from a point

source are described as spherical because of their rounded wavefronts. Spherical waves

are described mathematically by

u(r ; t) =
A
r

ei (kr � !t ) ; (13)

where A is known as the source strength, or the wave's amplitude at the source,r

is the propagation distance andk = 2�=� is the wavenumber. A=r is the wave's

amplitude, which degrades as the wave propagates and spreads. After propagation

over long distances, such as the case when observing distant stars, the curvature of

the wavefront becomes negligible and they can be estimated as planar, or 
at, as

represented by

u(r ; t) = Aei (k �r � !t ) ; (14)

Where A is now a constant amplitude that doesn't change as a function of propagation

distance. Each of these equations are solutions to the wave equation [11].
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Once e�ects such as di�raction are introduced, it becomes di�cult to describe

mathematically how light will react. Huygens' principle, which is a direct result from

the di�erential wave equation, attempts to simplify this complexity by assuming each

point across a wavefront is itself a source of a spherical wavelet that exhibits the same

velocity and frequency as its predecessor [11]. Huygens' principle is a greatly simpli-

�ed theory of wave propagation that does not account for interference e�ects. More

complicated phenomena such as propagation through turbulence must be described

using di�erent methods.

2.2 Atmospheric Turbulence

The collection of molecules in the atmosphere move as a mostly inviscid 
uid

with two evident states of motion: laminar 
ow and turbulent 
ow. Laminar 
ow is

smooth and uniform such that mixing within the velocity �eld does not occur, whereas

turbulent 
ow is random, chaotic, and leads to a nonuniform velocity �eld, which

di�racts propagating light waves unevenly across their wavefronts [12]. To categorize

the 
uid motion, Osborne Reynolds [13] introduced a dimensionless quantity

Re =
V l
�

(15)

known as the Reynold's number, where V is a characteristic velocity, l is a charac-

teristic length, and � is the kinematic viscosity (m
2

s ). The similarity principle for

incompressible 
ow states that for a given set of boundaries, the Reynold's number is

the only control parameter [14]. The transition from laminar to turbulent 
ow occurs

at a point known as the critical Reynold's number [12]. The kinematic viscosity of

air is � = 1:5 � 10� 5 m2

s . If a scale size ofl = 10 m and a velocity of V = 1 m
s are

assumed, a Reynold's number ofRe = 6:7� 105 is obtained [15]. This value is greater
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than the critical Reynold's number and is therefore high enough to ensure the air


ow in the atmospheric is almost always turbulent. Once in the turbulence regime,

the turbulent motion is dominated by inertial forces, which produce 
ow instabilities

and chaotic eddies. However, at very high Reynold's numbers, statistical symmetries

seem to reappear. Turbulence under these conditions is known as fully developed

turbulence.

By nature, the 
uid motion of the atmosphere is turbulent. Temperature, pres-

sure, and humidity 
uctuations lead to pockets of unstable air currents known as

optical turbules, or more colloquially, eddies. The e�ects of pressure and humidity

are often considered negligible and therefore turbulence is seen as a function of only

temperature 
uctuations [16]. Temperature variations on the scale of less than 1� C

produce small 
uctuations in atmospheric density, and subsequently, in the index of

refraction. The slight variations in refractive index can accumulate on a light beam

and lead to major inhomogeneities, which in turn cause detrimental e�ects like beam

wander, scintillation, and beam spreading [4]. Eddies form at the macroscale when

energy sources such as wind shear and convection increase the wind velocity, which in

turn increases the Reynold's number of the turbulent 
ow until it passes the critical

Reynold's number. Kolmogorov's energy cascade theory of turbulence adopted from

Richardson [17] shown in Figure 1 states that large scale eddies transfer their energy

to the continuum of smaller scale eddies. The outer scale of eddy size, denoted by

L0, is the upper bound below which the turbulent 
ow of eddies is independent of the

parent 
ow. The inner scale, l0, is the lower bound below which the energy cascade

ceases and the energy contained by the eddies is instead dissipated in the form of

heat. The inner scale is related to the dissipation rate of turbulent kinetic energy,� ,

8



Figure 1. Kolmogorov energy cascade theory of turbulence, where eddies at the outer
scale, L 0, transfer kinetic energy to the continuum of eddies towards the inner scale,
l0. Eddies smaller than the inner scale dissipate their energy as heat [12].

and the kinematic viscosity,� , by [4]

l0 = 7:4
�

� 3

�

� 1=4

: (16)

Eddies larger thanl0 and smaller thanL0 form the inertial subrange. From ground

level to approximately 100 m above ground, the outer scale is assumed to grow linearly

as a function of height [12].

The atmospheric index of refraction is particularly sensitive to temperature 
uc-

tuations and turbulent mixing. The e�ect on refractive index is powerful enough that

it becomes spatially and temporally random. These variations in refractive index,

which perform as lenses in beam propagation, are the driving factor behind optical

turbulence [7]. A light beam passing through a turbulent medium experiences inho-

mogenous phase distortion across its wavefront because patches across the wavefront

propagate at a slightly di�erent velocity based on the varying refractive indices they

9



encounter. With longer exposures (i.e. longer propagation distances), more phase

distortion is accumulated on the wavefront. This phenomenon causes optical tur-

bulence to behave as a low-pass spatial �lter, which softens sharp edges and causes

point sources to appear as blurs [18]. The e�ects of optical turbulence on an incident

planar wavefront are shown in Figure 2.

Figure 2. Atmospheric distortion of a planar wavefront due to optical turbulence.
As the wavefront contacts eddies, points across the wavefront propagate at varying
velocities based on the indices of refraction they pass through, which in turn distorts
the wavefront.

One of the most signi�cant parameters of optical turbulence strength, known as

the Fried coherence length denoted byr0, was introduced by David Fried in 1967

[19]. The Fried parameter physically represents the diameter of a circular patch of

wavefront over which the root-mean-square aberration due to turbulence is equal to

1 radian. For telescopes without AO and with apertures larger thanr0, imaging

resolution will be limited by turbulence and thus di�raction-limited performance is

not achievable. In adaptive optics design,r0 is used to determine the spacing of

deformable mirror actuators [20]. The Fried coherence length is described mathemat-
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ically for a plane wave as

r0 =
�
0:423k2sec(� )

Z

P ath
C2

n (z)dz
� � 3=5

; (17)

wherek is the wavenumber,z is the height from ground [12], and� is the zenith angle

(i.e. the angle of observation relative to surface normal) [21]. For the purpose of this

work, which assumes spherical waves from the HeNe point sources,r0 is given by

r0 =
�
0:423k2

Z

P ath
C2

n (z)
�

1 �
z
L

� 5=3
dz

� � 3=5

; (18)

where L = 511 m is the path length, � is assumed to be 0, andz is now position

along a horizontal path (z = 0 at the aperture plane). This integral can be discretized

as

r � 5=3
0 = 0:423k2

LX

i =0

C2
ni

�
1 �

zi

L

� 5=3
� z; (19)

where � z is the step size, which has been chosen in this experiment to be 0.5 m.

For a telescope looking near zenith,r0 can be as large as a few meters under good

seeing conditions at infrared wavelengths. During poor seeing conditions at visible

wavelengths,r0 may be only a few centimeters [21].

High spatial frequencies correspond to �ne image detail, therefore optical systems

that permit these high frequencies are considered superior. The spatial frequency

bandwidth of an optical system is closely related to the system's modulation transfer

function (MTF). The MTF of an incident plane wave through turbulence as a function

of spatial frequency� is given by

MTF turb (� ) = exp

"

� 3:44
�

�f �
r0

� 5=3
#

;
1

L0
� � �

1
l0

; (20)

where � is the wavelength andf is the focal length of the telescope. Equation 20
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displays how low spatial frequencies transmit more easily through turbulence and high

spatial frequencies are largely �ltered out [12]. This e�ect signi�cantly degrades the

resolution of images propagated through the atmosphere. When an optical imaging

system is introduced, the resolution of the system becomes a function of the MTF of

the turbulence and the receiver optics by

R =
Z 2�

0

Z D
�f

0
MTFO(� )MTF turb (� ) �d�d�

=
4D 2

� 2f 2

Z 1

0
u

�
cos� 1u � u

p
1 � u2

�
exp

"

� 3:44
�

Du
r0

� 5=3
#

du; (21)

where D is the diameter of the telescope aperture. Equation 21 limits the resolution

of the system under turbulent conditions to

Rmax =
�r 2

o

4� 2f 2
: (22)

The ratio of the system resolution to the maximum resolution can then be closely

approximated as a function of the aperture diameter and Fried's parameter as

R
Rmax

�

�
D
r 0

� 2

�
1 +

�
D
r 0

� 5=3
� 6=5

: (23)

By Equation 23, the ratio is approximately 1 whenD � r0 and approximately (D=r0)2

when D � r0. Therefore, optical performance of the system is heavily dependent on

the aperture size and Fried's parameter, which imposes a strict limit to the telescope's

aperture size.

At its core, turbulence is a non-linear process in a viscous medium with motion
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described by the incompressible Navier-Stokes equation

@tv + v � r v = �r p + � r 2v (24)

r � v = 0; (25)

where@t is a partial time derivative, v is the 
ow velocity vector, p is the pressure,

and � is the kinematic viscosity [14]. Theoretically, one should be able to predict the

movement of all turbulent 
ow using the Navier-Stokes equations. However, three-

dimensional closed-form solutions to the Navier-Stokes equations have not yet been

proven to exist for all systems due to the sheer amount of random parameters that

must be considered. Therefore, it is currently only possible to describe turbulence in

a statistical sense and through use of approximations.

2.3 Statistical Model of the Atmosphere

Many cases of random processes can be described accurately using stationary ran-

dom functions. This is not the case for the main atmospheric parameters: wind ve-

locity 
uctuations, temperature 
uctuations, and refractive index 
uctuations. Each

of these �elds vary spatially and temporally with mean values that are only constant

over short periods of time. Therefore the �elds may only be considered stationary

over short increments. In order to describe processes of this nature, a function must

account for the shifting mean [12]. This is the purpose of the structure function. A

random processx(t) can be described by

x(t) = m(t) + x1(t); (26)

where m(t) is the mean ofx and x1(t) satis�es hx1(t)i = 0 to account for the time-

varying average, which is a zero-mean 
uctuation. The structure function of this
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process is then

Dx (t1; t2) =


[x(t1) � x(t2)]2

�

= [ m(t1) � m(t2)]2 +


[x1(t1) � x1(t2)]2

�
: (27)

If the mean of x(t) varies slowly, the �rst term in Equation 27 becomes negligible

[12].

In the time domain, a stationary random processx(t) can be described by the

correlation function

Rx (� ) = hx(t)x � (t + � )i ; (28)

where� is the stationary increment in time. Similarly, the covariance function is

Bx (� ) = Rx (� ) � j mj2: (29)

Clearly, if the mean value ofx(t) is zero, its correlation and covariance functions

are equal. When the time step is zero (� = 0), Bx (0) is simply the variance of the

variable x. For a zero-mean random process and by the Riemann-Stieltjes integral

x(t) =
Z 1

�1
ei!t d� (! ); (30)

the covariance/correlation function can be written

Bx (� ) =
Z Z 1

�1
ei (! 1 t1 � ! 2 t2 ) hd� (! 1)d� � (! 2)i : (31)

The Wiener-Khintchine theorem states the covariance function is related to the

power spectral density (PSD) function as a Fourier transform pair. The PSD function

describes the distribution of power amongst the frequency components of the signal.

14



The relation between the two is

Bx (� ) =
Z 1

�1
ei!t Sx (! )d! (32)

Sx (! ) =
Z 1

�1
e� i!t Bx (� )d�; (33)

whereSx represents the PSD.

A random process is considered stationary if its statistical properties don't vary

in time. Equivalently, the probability density function (PDF) of a stationary random

process is dependent solely on time increments� [12]. In turn, this means the random

�eld in question must be statistically homogeneous and isotropic. Atmospheric tur-

bulence can be treated as a process that is stationary only in increments. Therefore,

the covariance function is not applicable to most cases of turbulence. For this rea-

son, the structure function is generally used instead to describe the random turbulent

processes even though it contains less information.

The functions described in this section are only approximations that estimate

the stochastic �eld as locally homogeneous. Kolmogorov[22] worked based on these

approximations in order to develop his theory of turbulence and thus did not derive

his work from �rst principles.

2.4 Kolmogorov Theory

In the earliest days turbulence research, it was regarded as a purely stochastic, or

random, process. Andrei Kolmogorov in 1941 was the �rst to begin viewing turbu-

lence using statistics, which allowed it to be theoretically modeled [12]. Kolmogorov

adopted Richardson's energy cascade theory of turbulence. In the Kolmogorov theory,

eddies smaller than the outer scale are assumed to be statistically homogeneous and

isotropic (no preferential direction), while eddies larger or equal to the outer scale are
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assumed to be anisotropic with ill-de�ned structure [12]. Therefore, Kolmogorov's

statistical approach to turbulence only applies to eddies within the inertial subrange.

The spatial and temporal 
uctuations of refractive index are described by the

structure function

Dn (r ) = h(@n)2i = h[n(x; t) � n(x + r ; t)]2i ; (34)

whereh i represents ensemble averaging, n is the refractive index,r is the separation

vector, t is time, and x is the position vector. Under Kolmogorov's assumptions for

large Reynold's numbers and at scales belowL0, the structure function becomes

Dn (r ) =

8
><

>:

C2
n l � 4=3

0 r 2; 0 � r � l0

C2
n r 2=3; l0 � r � L0

(35)

whereC2
n is the refractive index structure parameter (units m� 2=3) and r is now the

magnitude of the separation vector [7]. The spatial variations in refractive index have

been empirically related to the temperature and pressure at the same point by

n(r ) = 1 + 77 :6 � 10� 6

�
1 +

7:52� 10� 3

� 2

�
P(r )
T(r )2

� 1 + 79:2 � 10� 6 P(r )
T(r )2

; (36)

where� is the optical wavelength on the order of 0.5�m [12]. As shown in Equation

36, the index of refraction atr is inversely proportional to the temperature atr . This

gives rise to a relation betweenC2
n and the temperature structure parameterC2

T [23]

by

C2
n =

�
79:2 � 10� 6 P(r )

T(r )2

� 2

C2
T : (37)
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Physically, C2
n describes the strength of the refractive index 
uctuations in space

and time, which indicates the extent of the distortion a wavefront will experience

when passing through that region at that instance.C2
n generally ranges from 10� 17

to 10� 12 m� 2=3, with larger values indicating \stronger" turbulence. C2
n values tend

to be largest at the Earth's surface due to mechanical mixing and greater convective


ow e�ects and decrease as a function of height above the surface [12]. The struc-

ture parameters for temperature and humidity,C2
T and C2

q , are de�ned similarly for

their respective structure functions [7]. Kolmogorov showed by dimensional analy-

sis that each of these structure functions follows a universal 2/3 power law within

the inertial subrange. The 2/3 power law states generally that for a turbulent 
ow

at large Reynold's numbers, the mean squared increments of velocity, temperature,

and refractive index between two points behave as the 2/3 power of their separation

distance [14].

If the refractive index of the atmosphere is assumed to behave as a random process

of 
uctuating index about a mean value (Equation 26), the covariance of the refractive

index �eld is then

Bn = hn1(r + r 1)n1(r 1)i ; (38)

where h i represents an ensemble average. The three-dimensional power spectrum

of phase 
uctuations, also known as the power spectral density (PSD), is the Fourier

transform of this covariance

� n (� ) =
1

(2� )3

Z
d3rB n (r )e� i�r ; (39)

where� is the three dimensional spatial wavenumber (unitsrad
m ). Within the inertial

subrange, by changing to spherical coordinates and calculating the ensemble average,
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the PSD becomes

� n (� ) =
5

18�
C2

n � � 3
Z L 0

l0

sin(�r )r � 1=3dr: (40)

If the integral limits are allowed to diverge,l0 ! 0 and L0 ! 1 , the PSD follows a

-11/3 power law known as the Kolmogorov spectrum [4, 6] according to

� n (� ) = 0 :033C2
n � � 11=3;

1
L0

� � �
1
l0

: (41)

The one-dimensional analog to Equation 41 follows a -5/3 power law.C2
v and C2

T

follow the same power law. Outside of the inertial subrange, both the 2/3 and the

-11/3 power laws begin to break down. Each of Kolmogorov's theorems have been

consistent across a number of experiments [24], yet there is still no solution that

begins with the Navier-Stokes equations to derive these laws. Experimental methods

of measuring turbulence using Kolmogorov's theories have been in use for decades

and have proven their credibility.

2.5 Methods of Turbulence Pro�ling

SLODAR and SCIDAR are both triangulation-based remote sensing methods for

determining the distribution of atmospheric optical turbulence that have proven e�ec-

tive in the past. Both methods are used by astronomers to produce vertical pro�les of

C2
n . They can also be used to record temporal and spatial characteristics of turbulence

at di�erent altitudes as the overall structure is shifted by the wind.

The classical SCIDAR technique as described in the literature [5, 8] uses detec-

tion of scintillation, or 
uctuations in intensity, in the pupil plane of a telescope to

generate theC2
n pro�le. A generalized SCIDAR technique �rst suggested by Fuchs

[25] extracts spatial information from the scintillation images of double star targets

(binary star systems) to produce verticalC2
n pro�les of the total atmosphere. Wave-
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fronts emerging from a star can be considered planar by the time they reach the

Earth. When these wavefronts pass through layers of turbulence at heighth, they

form scintillation di�raction patterns relative to the C2
n structure they pass through.

The second star in the binary pair, separated by� (typically a few arcseconds), will

produce wavefronts that are distorted in a slightly di�erent manner because of the

di�erences in propagation path through the turbulent layers. The cross-correlation

function of the two scintillation patterns shows a peak at the distance�h with ampli-

tude proportional to C2
n [9]. If multiple layers of turbulence are observed rather than

just one, they each impose independent intensity perturbations. The cross-correlation

function represents the sum of the contributions from each layer. If the two spatial

autocorrelation functions in the parallel and perpendicular directions to the star sep-

aration are represented byCk and C? respectively, then their di�erence (as given by

Avila et al. [9]) is

B(x) = Ck � C?

=
Z 1

0
dh K (x; h)C2

n (h) + N (x); (42)

where B(x) is the di�erence of the two autocorrelation functions measured at the

pupil plane of the telescope by a charge-coupled device (CCD).K (x; h) is known as

a kernel and is the theoretical autocorrelation function generated by a single layer of

turbulence at height h. N (x) is the estimated noise over the system.K (x; h) is a

diagonal matrix and can therefore be inverted to obtain theC2
n (h) pro�le along the

path.

The SCIDAR technique is ideal for astronomical imaging because of the long

path distances. Scintillation occurs because of the atmosphere's di�ractive e�ects.

Therefore, there must be ample propagation distance from the source to the telescope

for the e�ects to be impactful. As shown by Roddier [26], variance in scintillation is
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proportional to h5=6. For this reason, SCIDAR is restricted in measuring turbulence

near the telescope.

SLODAR is a method similar to SCIDAR, with the main distinction being SLO-

DAR uses phase aberrations on the wavefront rather than scintillation patterns. SLO-

DAR is of particular interest to this thesis because the HTS uses SLODAR-type mea-

surements to estimate the turbulence pro�le along a horizontal path. SLODAR relies

on the measurements of local wavefront tilts (the �rst derivative of the wavefront)

found by the Shack-Hartmann Wavefront Sensor (SHWFS) when observing a binary

star system through turbulence. The n� n SHWFS lenslet array samples the wave-

front and focuses a subimage of the wavefront patch onto a subaperture array, which

measures the 2-dimensional spot motions (also called Zernike tilts or Z-tilts) of the

subimage within each subaperture.

Wilson[27] outlines the following steps used in the SLODAR method to determine

the turbulence pro�le:

1. Subimages from the SHWFS are recorded simultaneously for each star in the

binary pair for short exposures such that the turbulence is invariant during

image capture.

2. The centroid locations within each subaperture are measured to calculate local

wavefront tilts in both the tip and tilt direction. The mean slope is subtracted

from the stars' individual slopes to eliminate telescope tracking error.

3. The cross-correlation of the collected slopes is measured. From the slope,si;j (t),

of subaperture (i; j ) at time t and the concurrent slope from the second star

at a neighboring subaperture,s0
i + �i;j + �j (t), where �i and �j are the separations,
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the cross-correlation is

C(�i; �j ) =

*
X

i;j

si;j (t)s0
i + �i;j + �j (t)

O(�i; �j )

+

: (43)

The angled brackets indicate ensemble averaging over many individual frames

andO(�i; �j ) is the number of overlapping subapertures for the given separation.

4. Similarly, the autocorrelation of a single star at a pair of subapertures is

A(�i; �j ) =

*
X

i;j

si;j (t)si + �i;j + �j (t)
O(�i; �j )

+

: (44)

The autocorrelation provides an estimate of the system's impulse response due

to a single layer of turbulence.A(�i; �j ) can be deconvolved withC(�i; �j ) to

recover the turbulence pro�le. If the axis of source separation is aligned with

the SHWFS axes, only the one-dimensional cross-correlation along�i or �j must

be calculated to recover the pro�le.

5. Given the normalized turbulence pro�le from Step 4, the full integrated turbu-

lence strength along withr0 estimates are found by tracking centroid motion

with algorithms such as the di�erential image motion method (DIMM)[28].

The cross-covariance of two stochastic processesX and Y (e.g. two independent

paths through turbulence) is a measure of the similarity between the two outcomes

as a function of relative time between the two. The cross-covariance ofX at time t1

and Y at time t2 is de�ned as

CXY (t1; t2) = h
�
X t1 � h X t1 i

��
Yt2 � h Yt2 i

�
i ; (45)

where h i represents the expectation value operator. The cross-covariance function
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introduces an anisoplanatic term, which causes the impulse response, or the shape of

a turbulent layer's covariance at a set altitude, to 
uctuate at points along the path.

The impulse response of SLODAR relative to altitude and the power spectral density

of turbulent phase 
uctuations is then determined with a fractional error. Ignoring

the previously introduced anisoplanatic e�ects and under Kolmogorov turbulence

assumptions, the fractional error ofC2
n calculation takes values anywhere from 0% at

the telescope to 20% at the source [29].

The locations of discrete points along the path whereC2
n is estimated are deter-

mined by the path crossings of the two stars, which are themselves determined by

the lenslet array geometry and the angular separation of the star system as shown

in Figure 3. If the number of subapertures is represented by n, the heights of each

Figure 3. SLODAR geometry for a binary star system and n = 4 subaperture array.
The crossings are determined by the angular separation between the stars, � , and the
diameter of the subapertures, w. D represents the diameter of the telescope pupil.
Adapted from Goodwin [6].

subsequent crossing are given byhm = m � �h , where m ranges from 0 to n-1 and

�h = w
� . The distance from the stars to the subaperture array is thenhmax = D

� . Star
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pairs having a larger angular separation will lead to higher resolution data of ground

layer turbulence (at the wavefront sensor) and lower resolution at the source end.

These methods, along with many others (di�erential imaging [3, 5], MASS [5],

etc.) all attempt to estimate the turbulence pro�le along a path. Once the tilts along

the path are known to a degree, the information can be fed into an adaptive optics

imaging system, which can correct for the turbulence-induced distortion and allow

for near aberration-free propagation through the turbulence.

2.6 Adaptive Optics

When left uncompensated, the e�ects of atmospheric turbulence on a wavefront

include signi�cant degradation like distortion and blur. This negative e�ect lead

to the creation of adaptive optics (AO), which is used to improve the performance

of optical systems that require propagation through the atmosphere. The overall

purpose of AO is to compensate for wavefront distortion in real time using a closed

loop by sensing the phase distortion of a known reference source and applying the

conjugate phase to the outgoing beam (or incoming image) to correct the distortion.

The main components of an AO imaging system are a deformable mirror to induce

a controlled distortion to the wavefront, a wavefront sensor to measure turbulence

degraded wavefronts, which determine how the mirror will be shaped, and an actuator

command computer to shape the mirror properly [12]. The schematics of a typical

AO system are shown in Figure 4.

AO systems attempt to constantly correct for the rapidly changing e�ects of the

atmospheric distortion. Ideally, this allows for undistorted images to be received,

which is of great interest to astronomers [30]. It also allows for laser wavefronts to be

propagated such that they have little to no distortion upon contact with their target,

which dramatically increases their lethality. However, the task of correcting for the
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Figure 4. Schematics of an adaptive optics imaging system. The distorted source image
is divided by a beam splitter and passed to a wavefront sensor. The wavefront sensor
passes information about the wavefront distortion to a control computer, which in turn
alters the shape of the deformable mirror to induce a conjugate phase on the corrected
outgoing wavefront. Figure adapted from Tyson [4].

randomly shifting distortion imposed by atmospheric turbulence is non-trivial. The

AO loop must be fed rapid and accurate information about the atmospheric conditions

in order to function properly. In practice, AO systems are limited by the �nite amount

of incident light received by the wavefront sensor and the di�erence in the turbulence

pro�le that may occur between the path of the known source and the outgoing signal.

The latter e�ect is quanti�ed with a variable known as the isoplanatic angle, � 0,

which determines the �eld of view over which spatial invariance may be assumed

[31]. Anisoplanatic tilt error in the optical system may lead to the deformable mirror

not being shaped to the proper turbulence pro�le, leading to a non-ideal outgoing

wavefront. If the path di�erence between the reference and the outgoing beam is

greater than � 0, proper correction for the atmospheric distortion is not possible. Just

like r0, the isoplanatic angle is closely related to the MTF of the optical system.� 0
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represents the 1=epoint of the MTF assuming a spherical wave by

MTF � (� ) = exp

"

�
�

�
� 0

� 5=3
#

: (46)

The isoplanatic angle in Equation 46 can be written

� 0 =
�
2:91k2

Z L

0
C2

n (z)z5=3dz
� � 3=5

: (47)

Greenwood [32] studied formulas for the bandwidth of AO systems and in doing so,

proposed a term to quantify the characteristic atmospheric frequency, which is now

known as the Greenwood frequency,f G. He de�ned the characteristic frequency as

f G =

"

0:0196
�

k
� r

� 2 Z L

0
C2

n (z)v5=3(z)dz

#3=5

; (48)

where� r is the total uncorrected power andv(z) is the wind speed transverse to the

propagation path. Greenwood proposed two speci�c cases and how the characteristic

frequency is de�ned for each: ground-based operations along near-horizontal paths

and astronomical observations [32]. The case of interest for this thesis is the near-

horizontal path, which Greenwood de�ned as

f G =

(

7:34� 10� 3

�
k
� r

� 2

C2
n

v8=3

!

" �
1 +

!L
v

� 8=3

� 1

# ) 3=5

; (49)

whereC2
n is assumed to be constant along the path and the transverse wind speed is

composed of a constantv and a pseudowind!z in terms of an angular slew rate! . The

reciprocal of the Greenwood frequency is known as the Greenwood time constant,� 0,

which gives the time interval over which the turbulent conditions remain essentially

constant. For constant transverse wind speedv? , the characteristic time constant is

25



directly related to the Fried parameter by

� 0 =
0:32r0

v?
; (50)

which is typically on the order ofms [32].

The performance of AO systems is measured in many ways. One method of

classi�cation is known as the Strehl ratio (SR), which is de�ned as the ratio of the

maximum mean irradiance in the focal plane through turbulence vs. free-space prop-

agation. Under weak turbulence conditions, the SR can also be written in terms of

the ratio of the point spread functions (PSF) of turbulent conditions to free-space

conditions by

SR =
PSF(0)
PSF0(0)

=
1

1 + ( D=r0)5=3
D=r0 � 1; (51)

whereD is the aperture diameter. The PSF, or impulse response, of an incoherent

imaging system represents the system's irradiance in the output plane in response to

a point source.

2.7 Multi-Conjugate Adaptive Optics

Adaptive optics methods are a very promising solution to correcting the phase

distortions induced by optical turbulence. However, use of a single deformable mirror

(DM) in wavefront correction has limitations over extended regions of interest. A sin-

gle mirror is only capable of improving wavefront/image quality over a small angular

�eld of view [33]. AO telescopes are only e�ective over a �eld area that is approx-

imately the size of the isoplanatic patch. For this reason, AO systems can produce

high-resolution images of binary stars, but are incapable of correcting images of plan-

ets and galaxies. One method proposed to increase the corrected �eld of view of AO

telescopes is to apply a three-dimensional phase correction by a series of DM's placed
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in the optical train of the telescope [34]. It is widely accepted that a greater num-

ber of deformable mirrors operated in series could provide full phase correction even

during highly anisoplanatic situations [4]. This method is known as multi-conjugate

adaptive optics (MCAO). Despite the agreement on its potential, technical hurdles

and cost considerations have limited the use of MCAO systems [33]. In order for a

MCAO system to apply the proper conjugate phase for each atmospheric layer, the

pro�le of the turbulence must be known.

It has been shown[35] that atmospheric turbulence is often concentrated within

vertical layers rather than being uniformly distributed. MCAO systems attempt to

correct for each \layer" separately by assigning a deformable mirror to each section,

e�ectively increasing the isoplanatic patch [4]. Even in the absence of measurement

noise, angular anisoplanatism serves as the limit to AO telescope performance [34].

The schematic di�erence between a single DM AO system and a two-mirror MCAO

system are shown in Figure 5.

It can be assumed that the atmosphere is composed of discrete thin layers of

turbulence at varying heights. In the near-�eld approximation, the resulting phase

�( r ; � ) at the telescope pupil from zenith angle� is the sum of the contributions

from each layer

�( r ; � ) =
N tX

j =1

� j (r + hj � ); (52)

where r is the pupil coordinate, � j are the phase distortions by the jth turbulence

layer at altitude hj , and N t is the total number of layers [36]. Each phase is corrected

by a di�erent DM at the image of the respective turbulence layer.
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Figure 5. Schematic comparison of a single mirror AO system (a) and a two-mirror
MCAO system (b) when observing two individual layers of turbulence (e.g. surface
layer and tropopause). � i at each crossing represents the phase distortion from that
location. � C is the corrective phase. Adapted from Johnston et al. [34].
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III. Experiment

This chapter serves to connect the ideas discussed in Chapter 2 with the work done

in this thesis. The theory applied to the work, in particular the weighting functions,

is derived. The constrained nonlinear optimizer used to enhance theC2
n pro�les is

detailed. An outline of the equipment used for the experiment and the speci�cations

of each device is presented. Lastly, the methodology of the experiment is laid out in

full detail.

3.1 Theory

Weighting Functions.

The weighting functions used to generateC2
n pro�les from the HTS data have

been derived thoroughly by Fried [19] and Bose-Pillai [2] and will be derived again

here. Consider the geometry of a pair of point sources and a pair of subapertures as

shown in Figure 6.

Di�erential angle of arrival (i.e. �rst derivative of the phase di�erence) mea-

surement using two sources reduces common mode noise in the measurements (e.g.

platform vibrations and angular tracking error). By the geometric weighting function

method used in this work, it would not be possible to pro�le with a single beacon.

With one source, the beacon to aperture geometry would produce weighting func-

tions that are too similar to one another to accurately pro�le the turbulence. Fried

[37] relates the mean-square di�erential angle of arrival between two subapertures,

h(� 1 � � 2)2i , to the coherence length,r0, by



(� 1 � � 2)2

�
=



� 2

�
I (S; 	) ; (53)
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Figure 6. Geometry of a subaperture pair with two sources used to derive the crossing
weighting functions.

whereh� 2i is the two-axis mean-square tilt de�ned by



� 2

�
=



(� x )2 + ( � y)2

�
(54)

= 1:027
�

3:44
� 2

� �
�
D

� 1=3 �
�
r0

� 5=3

(55)

and I (S;	) can be written as

I (S; 	) =
�

16
�

� 2 Z 2

0
�d�

Z 1

0
du

u
�

1
8

cos� 1(u) +
p

1 � u2

��
u3

12
�

5u
24

�
+

�
u3

3
�

u
3

�
cos2(� )

��

�
n �

S2 + 2Sucos(� + 	) + u2� 5=6
+

�
S2 � 2Sucos(� + 	) + u2� 5=6

� 2u5=3
o

;

(56)

where S = S
D . Equation 56 can be evaluated numerically for various subaperture

separations/diameters and the angle of tilt direction relative to the separation vector

of the two subapertures (	 = 0 for parallel and 	 = �= 2 for perpendicular). The
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geometry of the sensing path and aperture separation vector between one source and

two subapertures will always form a triangle with no path crossings. This ultimately

results in multiple scaled versions of the same weighting function, making it impos-

sible to correctly pro�le the turbulence due to lack of variability between weighting

functions. The clearest solution to these issues is to introduce a second beacon for

pro�ling. Calculating the mean-square di�erence in angle of arrival measurements

between the two sources eliminates the tracking error, which is equivalent for both

sources and therefore drops out of the di�erence. A second source also allows for the

generation of multiple weighting functions with greater variability over the path, thus

making pro�ling possible.

The subapertures in Figure 6, each with diameter D, are located at positionsr 1

and r 2 with centers separated bys = r 2 � r 1. The Z-tilt of the 2nd source image at

the 1st aperture in the direction � 2 is given by

� 1(� 2) =
32�

� 2D 4

Z
W(r � r 1)� (r; � 2)dr (r � r 1); (57)

where � is the wavelength,� (r; � 2) is the wavefront distortion experienced by the

2nd source following propagation through turbulence to coordinater , and bold font

indicates a vector quantity. W(r � r 1) is called the circular aperture function, which

serves to limit the region of integration, which would otherwise be in�nite over the

aperture plane, by

W(r � r 1) =

8
><

>:

1; r � r 1 � D
2

0; r � r 1 > D
2

(58)

The Z-tilt across the 2nd aperture by the 1st source in direction� 1 is given similarly

by

� 2(� 1) =
32�

� 2D 4

Z
W(r � r 2)� (r; � 1)dr (r � r 2): (59)
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The Z-tilts are zero-mean random processes, which allows for the di�erential tilt

variance to be expressed as

* �
� 1 ( � 2 ) � � 2 ( � 1 )

� 2
+

=

* �
� 1 ( � 2 ) � � 2 ( � 1 )

�
�
�
� 1 ( � 2 ) � � 2 ( � 1 )

� +

=
�

32�
� 2D 4

� 2
* Z Z

dr dr 0
�
( r � r 1 )W (r � r 1 )� (r; � 2 ) � (r � r 2 )W (r � r 2 )� (r; � 1 )

�

�
�
( r 0 � r 1 )W (r 0 � r 1 )� (r 0; � 2 ) � (r 0 � r 2 )W (r 0 � r 2 )� (r 0; � 1 )

� +

;

(60)

where h i represents ensemble averaging. By changing the order of the integration

and ensemble averaging and multiplying the individual pieces, Equation 60 can be

written equivalently as

* �
� 1( � 2) � � 2( � 1)

� 2
+

=
�

32�
� 2D 4

� 2

�

" ZZ
dr dr 0(r � r 1) � (r 0 � r 1)W (r � r 1)W (r 0 � r 1)



� (r; � 2)� (r 0; � 2)

�

�
ZZ

dr dr 0(r � r 2) � (r 0 � r 1)W (r � r 2)W (r 0 � r 1)


� (r; � 1)� (r 0; � 2)

�

�
ZZ

dr dr 0(r � r 1) � (r 0 � r 2)W (r � r 1)W (r 0 � r 2)


� (r; � 2)� (r 0; � 1)

�

+
ZZ

dr dr 0(r � r 2) � (r 0 � r 2)W (r � r 2)W (r 0 � r 2)


� (r; � 1)� (r 0; � 1)

�
#

:

(61)
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Alternatively, this is written as

* �
� 1( � 2) � � 2( � 1)

� 2
+

=
�

32�
� 2D 4

� 2

�

" ZZ
dr dr 0(r � r 0)W (r )W (r 0)



� (r + r 1 ; � 2)� (r 0 + r 1 ; � 2)

�

�
ZZ

dr dr 0(r � r 0)W (r )W (r 0)


� (r + r 2 ; � 1)� (r 0 + r 1 ; � 2)

�

�
ZZ

dr dr 0(r � r 0)W (r )W (r 0)


� (r + r 1 ; � 2)� (r 0 + r 2 ; � 1)

�

+
ZZ

dr dr 0(r � r 0)W (r )W (r 0)


� (r + r 2 ; � 1)� (r 0 + r 2 ; � 1)

�
#

:

(62)

Because
RR

dr dr 0(r � r 0)W(r )W(r 0) = 0, terms that are functions of exclusivelyr

or r' can be added to Equation 62 without changing the result. Therefore, Equation

62 can be written

* �
� 1( � 2) � � 2( � 1)

� 2
+

= �
�

32�
� 2D 4

� 2

�

" ZZ
dr dr 0(r � r 0)W(r )W(r 0)�

�
D � (r � r 0) �

1
2

f D � (r � r 0; � 1 � � 2; s) + D � (r � r 0; � 2 � � 1; s)g
�

;

(63)

where

D � (r � r 0) =
D

[� (r + r 1; � 2) � � (r 0 + r 1; � 2]2)
E

=
D

[� (r + r 2; � 1) � � (r 0 + r 2; � 1]2)
E

; (64)

and

D � (r � r 0; � 1 � � 2; s) =
D

[� (r + r 2; � 1) � � (r 0 + r 1; � 2]2)
E

; (65)

D � (r � r 0; � 2 � � 1; s) =
D

[� (r + r 1; � 2) � � (r 0 + r 2; � 1]2)
E

(66)

are the set of phase structure functions [2]. For the case of spherical wavefronts
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propagating from each source through Kolmogorov turbulence de�ned with the power

spectrum in Equation 41, Equation 63 can be written as

* �
� 1 ( � 2 ) � � 2 ( � 1 )

� 2
+

= � 2:91k2
�

32�
� 2D 4

� 2 Z L

0
dzC2

n (z)

�
ZZ

dr dr 0(r � r 0)W (r )W (r 0) �

" �
�
�
�(r � r 0)(1 �

z
L

)

�
�
�
�

5=3

�
1
2

( �
�
�
�(r � r 0)(1 �

z
L

) + s � � � z

�
�
�
�

5=3

+

�
�
�
�(r � r 0)(1 �

z
L

) � s + � � z

�
�
�
�

5=3
)#

;

(67)

where � � = � 2 � � 1 represents the angular distance between the sources,k is the

wavenumber, and L is the path length. The HTS aperture plane is at z = 0 m and the

helium-neon laser sources are at z = L. Equation 67 also assumes the wave structure

function, which is the summation of the log-amplitude structure function and the

phase structure function, is approximately equal to the phase structure function [2].

Fried[38] and Winick et al.[31] describe the technique to integrate overr and r'

by a change of variables whereu = 1
D (r � r 0) and v = 1

2D (r � r 0). These techniques

reduce Equation 67 to

* �
� 1( � 2) � � 2( � 1)

� 2
+

=
Z L

0
dzC2

n (z)f dc(z); (68)

wheref dc(z) is the crossing path weighting function de�ned by

f dc(z) = � 2:91
�

16
�

� 2

D � 1=3
Z 2�

0
d�

Z 1

0
du

h
(u cos� 1u) � u2(3 � 2u2)
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z
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� 2

+ 2u
�

1 �
z
L
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cos�
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1
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"

u2
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1 �
z
L
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js � z� � j

D

� 2

� 2u
�

1 �
z
L

� �
js � z� � j

D

�
cos�

#5=6 )

:

(69)

Equation 69 can not be simpli�ed any further and thus requires numerical evaluation

from this point. Crossing path weighting functions are generated for every aperture
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Figure 7. Path weighting functions over the 511 m range for 22 di�erent subaperture
separations. The HTS subaperture plane is located at z = 0 m and the HeNe sources
are at z = 511 m. The weighting function with notch at 0 m is the self weighting
function. Increasing the aperture separation moves the notch closer to the source end.

separation from 0 to 35.09 cm (increments of 1.67 cm), with thes = 0 cm separation

weighting function known as the \self" weighting function because only one aperture

is considered. The 22 weighting functions are plotted in Figure 7. Each weighting

function drops to zero at the source end, implying that turbulence near the sources

has almost no e�ect on the wavefront tilts observed by the HTS [2]. Each weighting

function dips to zero at a singular point along the path. This location is where the

two sensing paths from the sources and apertures cross as was shown in Figure 6.

At the location of the crossing, the turbulence experienced by each sensing path is

exactly the same, therefore the contribution to the di�erential tilts at that location

has no e�ect on the signal.

The non-crossing weighting functions do not cross along the path, but rather

behind the subapertures or sources as shown in Figure 8. As observed in Figure 8,
s

d?
= h

h+ z . Therefore, d? = s(h+ z)
h = s + sz

h . From the same geometry,s = h� � .

Hence,d? = s + z� � for the non-crossing weighting functions, which di�ers from

the crossing weighting functions whered? = s � z� � . From this, the non-crossing
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Figure 8. Source and aperture geometry of non-crossing weighting functions. The ab-
sence of path crossings produces weighting functions with no locations of zero in
uence.

weighting functions are then

f dc(z) = � 2:91
�

16
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D � 1=3
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:

(70)

Non-crossing weighting functions are calculated for every separation from 1.67 cm

to 35.09 cm in increments of 1.67 cm. However, the functions produced for each

separation end up very similar. For this reason, only the �ve closest separations and

the largest separation non-crossing weighting functions were considered for this thesis.

Through trial and error, it was determined this combination produced the optimal

measurement noise cancellation and acted as DC values for the di�erenced crossing
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weighting functions, which lose information about magnitude once di�erenced. The

six utilized non-crossing weighting functions are shown in Figure 9. The non-crossing

weighting function for the smallest subaperture separation has the smallest amplitude

at z = 0 and the functions representing subsequent separations are ordered with

increasingly larger values at the same location.

Figure 9. Non-crossing weighting functions for the �ve closest and largest aperture
separations.

Once the 28 di�erent crossing and non-crossing weighting functions are generated,

they are combined into a 28� 1023 matrix, M , where each row corresponds to an

individual weighting function and the columns are where the functions are sampled

along the path (every 0.5 m for 511 m). Given this matrix, the estimatedC2
n along

the path is simply

C2
n;est = M + V; (71)

whereM + is the Moore-Penrose pseudo-inverse ofM and V is the set of di�erential

tilt variances calculated for the same aperture separations as the weighting functions.

The pseudo-inverse is calculated with respect to a given threshold, which ensures all
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singular values ofM below the threshold are not inverted. In the absence of noise,

the estimatedC2
n values are related to the true values by

C2
n;est = M + M C2

n ; (72)

whereM + M can be viewed as the in
uence function, or impulse response matrix,

which describes how the estimatedC2
n at a given position is a�ected by turbulence

elsewhere.

The technique outlined above is prone to noise and sometimes leads to negative

C2
n estimates, which are seen as gaps in theC2

n pro�le. This is especially common for

lower pseudoinverse thresholds when the estimates can hit the noise 
oor. For this

reason, larger thresholds are typically chosen to reduce noise. The trade-o� for using

larger thresholds is that weighting functions with singular values (from the singular

value decomposition) lower than the threshold are set to zero during pseudoinverse

calculation. Fewer weighting functions factor into estimates at larger thresholds,

therefore higher thresholds lead to a smaller credible range and an in
uence function

that \breaks" earlier along the path as shown in Figures 10 and 11. In practice, the

smallest threshold that produces minimumC2
n dropouts was chosen for any one data

set.
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Figure 10. The in
uence function for a threshold of 11 at 100, 200, 300, and 350 m. The
function breaks immediately past 350 m. 5 weighting functions have singular values
below 11.

Figure 11. The in
uence function for a threshold of 31 at 100, 200, 300, and 350 m.
The function now breaks near 300 m. 12 weighting functions have singular values below
31.
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Constrained Nonlinear Optimization.

For data sets with particularly strong turbulence, an additional e�ort to reduce the

measurement noise of the data must be applied. A constrained nonlinear optimizer

function, which attempts to minimize an objective function, was chosen to improve

the pro�les. The objective function to beat measurement noise is

(� xMX � V )2 ; (73)

where � x = 1
2 comes from the discretization of step sizes into half-meter increments,

M is the matrix of weighting functions at each discrete location,X is the minimizer of

the function in place ofC2
n , and V is the vector of tilt variances corresponding to each

weighting function. The original pro�le with the thresholded pseudoinverse is passed

to the optimizer as the initial guess. The negativeC2
n values for each pro�le are set

to a speci�ed 
oor value, which is changed depending on the initial pro�le estimate.

The lower and upper bounds of operation are also set based on the initial pro�le. A

constraint on r0 estimation for each data set was also used in the optimization.

3.2 Equipment

Hartmann Turbulence Sensor (HTS).

The HTS was designed to be the ideal tool for measuring local wavefront tilts

due to optical turbulence. Brennan et al.[20] outlines 5 requirements for an ideal

turbulence sensor:

1. A large telescope aperture to collect the maximum amount of light

2. A large collection of subapertures for statistical averaging
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3. Small subapertures for inner scale estimation withl0> 0:3d where d is the sub-

aperture diameter

4. A high frame rate camera for estimation of high Greenwood frequencies and for

di�erencing adjacent frames for noise estimation

5. A large dynamic range within each subaperture to measure large tilts during

strong turbulence

Each of these speci�cations were taken into account when designing the HTS, a

Shack-Hartmann wavefront sensor based on a 16" Meade LX200 coma-free telescope

[1]. The Shack-Hartmann sensor takes pupil plane measurements of local wavefront

tilts through use of a Thor Labs MLA150-5C lenslet array represented in Figure 12

[39].

Figure 12. Schematic of the Shack-Hartmann wavefront sensor. Collimated wavefronts
incident on the lenslet array are focused to di�erent points on the focal plane array
based on their local slopes [4].

The entire HTS system is mounted within a trailer on a 
oating suspension system,

which protects the system during transportation. The custom optics bench within the

HTS consists of a lenslet array, a Vision Research Phantom v7.3 high speed camera

(captures up to 8,639 frames/sec [1]), and relay optics to collimate and invert the
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image. Two 2.2 mW helium-neon (HeNe) laser beacons at 632.8 nm are incident

on the telescope. The 632.8 nm wavelength corresponds to a peak in the Phantom

camera's quantum e�ciency [1]. Each laser was �tted with a beam expander to

entirely illuminate the HTS telescope aperture. The center of the aperture is blocked

by a central obscuration, which houses the secondary mirror. The telescope's pupil

plane is imaged onto a 32� 32 array of lenslets, which sample the wavefront and focus

subimages onto the Phantom camera's CCD. On the CCD, an 18� 18 pixel region is

designated for each subaperture.

Figure 13. Original 18 � 18 pixel grid (dashed) compared to modi�ed 12.7 � 12.7 pixel
grid (solid). Telescope magni�cation is altered slightly to get 13 � 13 pixel regions for
each spot.

The lenslet array directs the incident wavefronts onto the Phantom camera's CCD,

where their point of focus is determined by local tilts as shown in Figure 14.

For this experiment, the subaperture mask was rotated by 45 degrees to provide

more separation between the focused spots from the two lasers. This resulted in a

12.7� 12.7 pixel region for the subimage from each laser. To avoid the complexity

of fractional pixel computation, the telescope magni�cation was slightly altered such
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Figure 14. Depiction of how a microlens' focus point is a�ected by the local wavefront
tilt. Here, f is the lens' focal length, � y is the displacement of the focus from the
optical axis, and d is the lens diameter.

that the mean focus position lie at the center of 13� 13 pixel boxes [2]. The resulting

subaperture mask is shown in Figure 13. The circular lenslets, each with focal length

5.2 mm, are 146� m in diameter and arranged in a square grid spaced 150� m apart

with the areas between lenses masked with chrome to prevent light from passing

through [1].

Figure 15. Approximate locations of the optics on the HTS optical bench. The focal
plane of the telescope is at 0 m. L1 collimates the telescope beam through the lenslet
array (LA). L2 and L3 invert the image vertically and recollimate the beam onto the
CCD[1].

The optical setup of the HTS is depicted in Figure 15. The alignment procedure

is outlined thoroughly in the HTS manual [1]. The system must be aligned using

an alignment source, which ideally fully illuminates the telescope aperture with a
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Optic Label Focal Length (mm) Diameter (mm) Location (mm)
Melles Griot 01LAL413/078 L1 50 20 46.339

Thor Labs MLA150-5C LA 5.2 0.146 105.07
Melles Griot 01LAO018/078 L2 25 8 138.31
Melles Griot 01LAO018/078 L3 65 25 230.41

Vision Research Phantom V7.3 CCD n/a n/a 283.24

Table 1. Speci�cations of the HTS optical bench outlined in Figure 15.

perfectly collimated or spherical wave. The Hartmann sensor has a minimum focal

distance of around 50 m, which limits the acceptable curvature of incident light en-

tering the telescope. Any misalignment in the optical bench will produce aberrated

subimages on the CCD and be detrimental to estimation of turbulence parameters.

Table 1 (adapted from Mann et al. [1]) outlines the HTS optics in further detail in

reference to Figure 15.

The inner HTS optics ensure the cells behind each subaperture are large enough

to prevent light from neighboring points to over
ow but small enough to keep the

computation time of the centroiding algorithm to a minimum [39]. A mask is applied

to the subapertures that receive little to no light either due to the telescope aperture

or its 4.8" diameter central obscuration [1, 40]. This reduces the total active regions

from 1,936 to 1,258. Additional subapertures may also be removed for individual data

sets if they are distorted or not focused correctly. The large number of subapertures

in use allows for quick and accurate estimates of turbulence parameters, making it

an ideal wavefront sensor for an AO system.
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Sonic Anemometers.

Four Applied Technologies SATI/3A ultrasonic anemometers were used for point

measurements ofC2
n at 100 m increments along the path. This model was chosen

for its three non-orthogonal axes of wind velocity (U, V, and W) measurement. The

design is optimal for measuring high speed wind and attempts to minimize the 
ow

distortion by the transducers [41]. The arms holding the anemometers were also

pointed due west (the direction of prevailing wind) to minimize 
ow distortion from

the arm. A pair of transducers are mounted in each axis separated by 15 cm [42].

The design of the anemometer is shown in Figure 16.

Figure 16. SATI/3A ultrasonic anemometer non-orthogonal design with 120� sepa-
ration between transducers. The U,V,W axes refer to the upper orientation of the
anemometer.

A sonic pulse is emitted by one of the transducers and captured by its opposing

transducer and vice versa [41]. The transit time of the signal between the transducers

is then calculated by

t = D

p
c2 � v2

n � vd

c2 + v2
; (74)
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where D is the path length, c is the velocity of sound in still air,v is the absolute

velocity, andvn andvd are the normal and parallel components of velocity, respectively

[42]. The parallel component is found by

vd =
D
2

(
1
t1

�
1
t2

); (75)

wheret1 and t2 are the transit times of the two opposing pulse directions [42].

From the sound velocity measurements, the anemometers can be used to obtain

sonic temperature information. The temperature structure parameter,C2
T , is obtained

from the temperature measurements using

C2
T = h[T0(t + � t) � T0(t)]2i (hV i � t)� 2=3: (76)

T' is the temperature 
ux that comes directly from anemometer measurements of

temperature, whereT0 = T � h Ti [43]. h i represents ensemble averaging, V is the

magnitude of the mean wind velocity vector, and �t is the time between measure-

ments. The anemometers were operated at a 10 Hz collection rate (�t = 0.1 s) and

over a 1 minute collection period. From Equation 37,C2
n can then be calculated using

C2
T by

C2
n = (79:2 � 10� 6 P

T
2 )2 � C2

T ; (77)

where the overbar represents a mean averaging, P is the pressure [16]. The SATI/3A

anemometers collect data at 200 Hz and output averaged data sets at 10 Hz. The

1-minute averaged data sets for 25 and 26 July are shown in Figure 17.

Figure 17 shows an interesting phenomenon that occurs following sunset. The 30

minute time span following sunset is a quiescent period during which atmospheric

heating by the sun rapidly fades. During this time, the atmosphere settles into a

horizontally layered structure. At the beginning of the quiescent period when the
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